Technical Report MSR-TR-99-62 ANISOTROPIC SELF-AVOIDING WALKS
نویسندگان
چکیده
We consider a model of self-avoiding walks on the lattice Z with different weights for steps in each of the 2d lattice directions. We find that the directiondependent mass for the two-point function of this model has three phases: mass positive in all directions; mass identically −∞; and masses of different signs in different directions. The final possibility can only occur if the weights are asymmetric, i.e. in at least one coordinate the weight in the positive direction differs from the weight in the negative direction. The boundaries of these phases are determined exactly. We also prove that if the weights are asymmetric then a typical N -step self-avoiding walk has order N distance between its endpoints.
منابع مشابه
Technical Report MSR-TR-98-19 SHARP PHASE BOUNDARIES FOR A LATTICE FLUX LINE MODEL
We consider a model of nonintersecting flux lines in a rectangular region on the lattice Zd, where each flux line is a non-isotropic self-avoiding random walk constrained to begin and end on the boundary of the region. The thermodynamic limit is reached through an increasing sequence of such regions. We prove the existence of several distinct phases for this model, corresponding to different re...
متن کاملar X iv : h ep - l at / 9 21 10 62 v 1 2 7 N ov 1 99 2 Algebraic Techniques for Enumerating Self - Avoiding Walks on the Square Lattice
We describe a new algebraic technique for enumerating self-avoiding walks on the rectangular lattice. The computational complexity of enumerating walks of N steps is of order 3 N/4 times a polynomial in N , and so the approach is greatly superior to direct counting techniques. We have enumerated walks of up to 39 steps. As a consequence, we are able to accurately estimate the critical point, cr...
متن کاملOn anisotropic spiral self-avoiding walks
We report on a Monte Carlo study of so-called two-choice-spiral self-avoiding walks on the square lattice. These have the property that their geometric size (such as is measured by the radius of gyration) scales anisotropically, with exponent values that seem to defy rational fraction conjectures. This polymer model was previously understood to be in a universality class different to ordinary s...
متن کاملPrudent Self-Avoiding Walks
We have produced extended series for prudent self-avoiding walks on the square lattice. These are subsets of self-avoiding walks. We conjecture the exact growth constant and critical exponent for the walks, and show that the (anisotropic) generating function is almost certainly not differentiably-finite.
متن کاملAnisotropic Self - Avoiding Walks
We consider a model of self-avoiding walks on the lattice Zd with different weights for steps in each of the 2d lattice directions. We find that the directiondependent mass for the two-point function of this model has three phases: mass positive in all directions; mass identically −∞; and masses of different signs in different directions. The final possibility can only occur if the weights are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999